Grünau
KBS Coating

A tough, permanent, non-intumescent fire protective coating for electrical cables and penetration seals
Grüna KBS Coating is a water-based, ablative fire protective coating, especially developed for the fire protection of grouped or bundled electrical cables and for penetration seals.

The main function of Grüna KBS Coating is to prevent flame propagation along vertical and horizontal cable ways. Grüna KBS Coating will also delay short circuit, whereby circuit integrity depends on the distance of the cables from fire and the incurred temperature. Grüna KBS Coating is easily applied by conventional methods such as spray and brush, as well as by hand (see application data). Grüna KBS Coating is also available free of halogen – named Grüna KBS Coating CLF.

Grüna KBS Coating has been tested to all recognized international standards and is used worldwide, from the arctic circle to the tropics. Its effectiveness has been proven in several documented cases of actual fires. Grüna KBS Coating is produced only by Grüna Illertissen GmbH maintaining a quality system which fulfils the requirements of DIN EN ISO 9001.

Grüna KBS Coating is also an integral part of the Grüna KBS Panel Seal ABL. Here it is used as coating for the mineral wool panels and the sealing of the penetrating cables and other utilities. For use of Grüna KBS Coating in the installation of Grüna KBS Panel Seal ABL please see separate brochure.

How does an ablative coating work?
Grüna KBS Coating protects electrical cables through ablation as opposed to insulation. Energy is consumed or generated to change any material from one condition or state to another.

Processes consuming energy are called "endothermic". Some materials need large amounts of energy to decompose or "break down". A good ablative composition requires a maximum of energy to decompose. Grüna KBS Coating when exposed to fire starts to ablate by chemical and physical reactions, for instance evaporation, chemical cracking, melting – all this is consuming energy (heat) while keeping the cable relatively cool (for a certain length of time, as the process is self-sacrificial).

The gases and vapours generated during the ablative process push oxygen away from the surface, dilute flammable gases preventing them from burning and interrupt the "chain reaction" of fire chemically. After decomposition of all organic components, a solid structure of inorganic components remains offering further protection by insulation.

Grüna KBS Coating ...
... lasts for the lifetime of cables ...
... does not derate electrical cables
Special Features

Fire protection
Grünaus KBS Coating prevents flame propagation on cables, thus keeping a cable fire localized to its source, even if some minor damage to the most exposed cables may be sustained.

According to studies by the British CEBG, a fire on vertical cable ways can spread 20 m per minute. Flame spread on KBS-coated vertical cables in the 40-minute IEC 332-3 test has been restricted to less than 10 cm (see list of international test results).

Grünaus KBS Coating has a LOI value of 100 (Limiting Oxygen Index).

What is a LOI value of 100?
The Limiting Oxygen Index value test, in accordance with ASTM D 2863, determines the percentage of oxygen in a nitrogen/oxygen mixture at which a material sustains burning on its own. In this test, which determines the burning characteristics of all plastic materials, the sample is secured in a glass cylinder containing a definite gas flow of O_2/N_2 mixture and ignited with a gas flame. Then the gas flame is removed and the sample is observed for continued burning. Soft PVC, as used for cable jackets, continues to burn at a low 25 – 30% oxygen content. Teflon, however, sustains burning only at a high 90-95% oxygen content.

Grünaus KBS Coating has a LOI of 100, which means, it does not burn in a 100% oxygen environment.

Ampacity
Grünaus KBS Coating does not affect the current carrying capacity of electrical cables. The FM test states «no derating required» (see list on page 5).

Why no derating when cables are coated with Grünaus KBS Coating?
Grünaus KBS Coating protects electrical cables through ablation and not through insulation. It is dense and thermally conductive during normal cable operating temperatures. Its thermal conductivity is better than that of PVC. The coating increases the circumference (= surface) of the cable or cable bundle. The surface area is further increased by the comparative roughness of the coating (radiator effect). This enlarged surface allows more heat to dissipate. The cable temperature, therefore, does not increase.

Chemical compatibility
Grünaus KBS Coating has been tested for compatibility with close to 90 chemicals and has been found to be unaffected by those most frequently found in industrial installation such as Diesel fuel, ethylene glycol, fuel oil, lubricating oil, turbine oil and many others.

Flexibility
Grünaus KBS Coating is highly flexible (see technical data).

Endurance/lifetime
Grünaus KBS Coating lasts for the lifetime of cables.

Prevention of poisonous and corrosive gases and smoke
By preventing the fire from spreading and eventually involving all cables, Grünaus KBS Coating also prevents the development of the dreaded HCl from PVC cables as well as the dense black smoke and poisonous gases developing from all types of cables.

Mechanical resistance
Grünaus KBS Coating is tough enough to sustain physical abuse such as walking on coated cable trays.

Human health compatibility
Grünaus KBS Coating is in no way affecting the human health system, it is non-toxic, solvent free, phosphate-free and does not contain asbestos or any other substance identified as being carcinogenic. Grünaus KBS Coating is practically odourless and does not affect the human skin.

Weather and water resistance
Grünaus KBS Coating is permanent protection under all weather and climate conditions. A fifteen-years outdoor test, documented by the Institute for Fire Protection of TU Brunswick/Germany, found Grünaus KBS Coating still performing the same as freshly produced material. Here cables had been exposed from highest summer heat to snow and ice in winter, part of their length being constantly immersed in water.
Application/Technical Data

Application to cables

Surface preparation
A thorough cleaning of cables is not required. However, oil or grease should be removed with dry rags (no solvent). Using a broom or vacuum cleaner to remove heavy layers of dust is sufficient.

Spray
Application by spray is done in the conventional way by spraying crosswise. The white of the coating should well cover the colour of the cable jacket. The wet thickness of the coating must be at least 2.5 mm. For getting at hard-to-get-at places, use extension nozzle. Where cables are close to a wall, stuff mineral wool between cables and wall and coat over. Generally the required thickness may be applied in one coat. However, where new vertical cables are to be coated, it is recommended to apply first a thin "fog coat" and let it dry, then apply final coat.

Hand
Large diameter single cables or bundles may be coated by hand. Again, a thin coat should be allowed to dry before the rest is applied, using both hands like an extruder. To achieve a smooth, even finish, use a wet brush.

Recommended coating thickness on cables:
Wet approx. 2.5 mm – resulting in approx. 1.6 mm dry coating

Coverage at recommended thickness:
Approx. 3.0 kg/m² for level surface. For grouped cables or cables in trays allow 30% more material considering the curved surfaces.

Application to mineral wool panels

This may be done by spray or trowel. If the latter method is preferred, a large steel trowel, such as used for levelling concrete surfaces, should be used. For the Grünau KBS Panel Seal ABL approx. 2.0 kg/m² will achieve the required approx. 1.3 mm dry thickness.

There are two types of Grünau KBS Coating available:
Grünau KBS Coating sprayable and Grünau KBS Coating Brushable

Thinning
Grünau KBS Coating has a water base, but thinning for both types of Grünau KBS Coating should not be necessary.

Spray equipment
Grünau KBS Coating may be applied with a great variety of spray equipment designed for application of high viscosity materials. Good results have been obtained with the following:

Airless spray equipment
Graco Ultra 1500 Mark V
Pressure at gun: 0 – 200 bar
Spray gun orifice: 0.9 – 1.0 mm (preferably reversible tip)

Conventional spray equipment
(with pressure pot)
Binks, De Vilbis Mastic, Wally or SATA
Material pressure: 4 – 5 bar
Pressure at gun: 4 bar
Spray gun orifice: minimum 3 mm diameter
Material hose: minimum 3/4” diameter
Air supply: compressor capable of delivering 200 l/min. (tank vol. at least 40 l) 6 bar

Please note
Air supply, air pressure, diameter of material hose as well as minimum orifice opening must be adhered to as recommended. All filters with the equipment must be removed prior to operating with Grünau KBS Coating.

Technical Data

Composition:
Grünau KBS Coating consists of water-based thermoplastic resins, inorganic combustible fibres, fillers, pigments and various flame retardant chemicals. Grünau KBS Coating is free of asbestos and solvents.

Colour: Off-white

Viscosity: Approx. 40,000 mPa·s

Density: Approx. .43 g/cm³

pH-value: Approx. 8.0

Solids: Approx. 70%

Limiting Oxygen Index (LOI): ≥95

Toxicity: Non-toxic

Storage temperature: 5 – 30°C,
Must be protected from frost!

Shelf-life:
In closed original containers at room temperature at least one year

Packaging:
Plastic drums of 35, 25 and 7 kg

Thinning i.e. cleaning of equipment:
Water

Drying time:
Depending on temperature and humidity
To the touch: within 24 hours (20°C/65% RH)
Cured: approx. 3 days (20°C/65% RH)

Flexibility:
PVC cables of 12 mm diameter coated with Grünau KBS Coating may be bent to a 3 cm radius without cracking.

Thermal conductivity:
λ = 0.69 W m⁻¹ · K⁻¹ at 25°C

Specific resistance:
ρ_p = 1.06 · 10⁹ (Ohm · cm)
at 23°C / 50% RH
ρ_p = 4.10 · 10⁹ (Ohm · cm)
at 23°C / 83% RH
Selection of International Test Results and Approvals

<table>
<thead>
<tr>
<th>Country</th>
<th>Type of Test</th>
<th>Standard</th>
<th>Result</th>
<th>Ref. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>France</td>
<td>Flammability test</td>
<td>Arrêté Ministériel</td>
<td>M1</td>
<td>631</td>
</tr>
<tr>
<td>Germany</td>
<td>Qualifying test concerning reduction of fire risks</td>
<td>-</td>
<td>ignition prevented</td>
<td>008</td>
</tr>
<tr>
<td></td>
<td>Current carrying capacity</td>
<td>-</td>
<td>no derating</td>
<td>106B</td>
</tr>
<tr>
<td></td>
<td>Dermatology test</td>
<td>-</td>
<td>no effect</td>
<td>110A/110B</td>
</tr>
<tr>
<td></td>
<td>Ship approval Germanischer Lloyd</td>
<td>SOLAS</td>
<td>-</td>
<td>147</td>
</tr>
<tr>
<td></td>
<td>Flame propagation on coated cables</td>
<td>DIN 4102, p. 1 (B1)</td>
<td>non-propagating</td>
<td>148</td>
</tr>
<tr>
<td></td>
<td>Flame propagation on coated cables</td>
<td>IEC 332-3</td>
<td>passed</td>
<td>169</td>
</tr>
<tr>
<td></td>
<td>Ageing and weathering</td>
<td>-</td>
<td>no damage after 15 years</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>LOI-determination</td>
<td>ASTM D2863</td>
<td>100</td>
<td>111/180</td>
</tr>
<tr>
<td>Great Britain</td>
<td>Flame spread</td>
<td>BS 476, p. 7</td>
<td>class 1</td>
<td>916 A</td>
</tr>
<tr>
<td>Norway</td>
<td>Fire spread</td>
<td>NT Fire 004</td>
<td>Class IN 1</td>
<td>710</td>
</tr>
<tr>
<td>USA</td>
<td>Ampacity</td>
<td>FM 3971</td>
<td>-</td>
<td>2001</td>
</tr>
<tr>
<td></td>
<td>Current carrying capacity</td>
<td>FM 3971</td>
<td>no derating</td>
<td>2001</td>
</tr>
<tr>
<td></td>
<td>Salt water exposure</td>
<td>FM 3971</td>
<td>-</td>
<td>2001</td>
</tr>
<tr>
<td></td>
<td>Dielectric strength</td>
<td>FM 3971</td>
<td>-</td>
<td>2001 / 2023</td>
</tr>
<tr>
<td></td>
<td>Flammability test</td>
<td>FM 3971</td>
<td>passed</td>
<td>2001 / 2023</td>
</tr>
<tr>
<td></td>
<td>FM approval</td>
<td>FM 3971</td>
<td>-</td>
<td>2001 / 2023</td>
</tr>
</tbody>
</table>

All test reports on request.